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I. INTRODUCTION

A previous report [3] presented a general outline of procedures

for simultaneously incorporating various sources of auxiliary informa-

tion into an impact acceleration injury prediction model. This report,

which serves as a companion volume, discusses computational aspects of

the procedures. Specifically, the report presents computational proce-

dures which allow the application of commonly used nonlinear estimation

programs found in statistical packages such as BMDP [1] and SAS [2].

Throughout this report, reference will be made to equations in the

previous report [3]. These equations, identified as (1) through (17)

in that report, will be referenced herein by the same numbers as a matter

of convenience. Equations in this report will therefore begin with

reference number (18). In addition, the notation used in the previous

report will be adopted without repeating its definition. Therefore, the

reader may find it convenient (or perhaps necessary) to have that report

readily available.
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II. COMPUTATIONAL PROCEDURES

To estimate the model in (17) by using a statistical package such

as SAS or DP, one should iteratively compute, for each observation:

(i) the model derivatives of (17) with respect to the

parameters $I and p

and (ii) the regression weights, (Pi(l -p)]. 1

The derivatives of (17) with respect to _l and p are

a Pi = *(Ui(l, p))(1 - 2) -  i

1 2 2)U( 1

a = (ui(e_, p)) • (-(1 - p2) sl + [p/(l - p2)U(kl, p)}ap

where O(U) = d D(U).
dU

This paragraph concludes the discussion of the problem without regard to

prior information.

A. PRIOR INFORMATION

The model parameters in (6) or (7), as the case may be, can be esti-

mated conveniently and efficiently by using the model in (17) to incorporate

the prior information into the parameter estimates. Here again the intuition

behind this approach comes from the likelihood of the observations. Consider

S the likelihood in (12). The form of this likelihood suggests the models:
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Yli = 0[(I - p2)- _1- Psi)] + (18a)

Y W -2 + C2i (18b)

where E( i) 0, Var (Ei) p i(l- p ) , Pi [Ui(-1, 0)

E(e2i) = 0, Var (c2 ) = 2

Note that the C and 2 error terms are stochastically independent,
i 21

since y1i/S and Y2, are independent. This fact makes the analysis by

statistical packages convenient since their nonlinear regression

algorithms cannot analyze correlated observations 6irectly.

As stated in the previous report [3], it is assumed that the prior

information can be in the form of

(1) a priori estimates of some function of the model parameters

and/or (ii) a priori knowledge in the form of model parameter equality

constraints.

The technique used to model the prior information discussed in the

previous report can be applied to the models in (18a) and (18b) to form

an overall model of direct and auxiliary information.

Let the prior estimates of some function of the model parameters

be expressed by (6), where

O-

Recall that it is assumed that the prior information embodied in r is

stochastically independent of

jjf -3-



(:1 (Yin)

Y21 Y2n

fl(, P) Vtj(Uo(_I  P)) _C_,P)

Let fi(_. p) = ,f(_, p) •

I', , n -C 21 [211
Then all the information, barring parameter constraints, can be modeled

as

r - .(_, p) + v (19a)

.  f(, P) + n_ (19b)

where E(v) = 0, Var(v) =T

S0 pi( - p) 0

and E(Q) - 0, Var(_U) V* tV

o 20 nV* 0

.1
) Pl ( i (B-' p ) ) "
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The vector r is conceptually and computationally considered as an

observation. Due to the structure of most statistical packages, this

concept can be computationally exploited only if T is a diagonal matrix,

where the diagonal elements of TV are considered as weights for the observa-

tions in r. Even if T is a diagonal matrix, it is probably the easiest

for the user if he or she transforms the elements of r so that the transformed

elements have the identity matrix as covariance matrix. This is done in

this report.

The elements of r can be transformed by premultiplying r by a matrix

r such that

z I r -

If r* denotes the transformed elements of r, then (19a) can be reexpressed as

r* r=*(_, p) + rv

where u*(_, p) =rg(_, p)

and E(r) 0, Var(r) r (rr)- r i.

B. PARAMETER CONSTRAINTS

To include constraints on the parameters, let

(_, p) - h(6) (20)

where dim e < dim(Q, p).

.. 5.
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Then, it follows that, defining V - N,

r* - *h(e)) + _ (21a)

- f(h(e)) + r . (21b)

Note that indicator variables can be used to facilitate the computation

of the estimates of (_, P) with a statistical package.

For example, consider the case without constraints and let

z, - 6 1iYli + 6 2iy2i + (1 - 6li) (1 - 6 2i)1 (22)

ki(_, p) 6li(liB_, p) + 621f2 i(O-, p) + (1 - 6 l)(1 - 62 1)g*(, P)

ei 6 lEi + 62El + (I - 6li) (1 - )

we if zi = yli' ki(ap p) = fli, p), and e, =

where 6 1i otherwise

6 (i if zi = Y21' ki(-8 p) = f2 1 (8, p), and e, = c21

2i O otherwise

and i = l,...,n , j - l,...,m , m = dim r*
th

Here rj, g*, and V1 are the j elements of r, *, and V respectively.

Now rewrite (22) as
z k(_, p) + e (23)

_ z 1: kl: p)  el

where z = , (8, O) = , e =

"Zn k n ) en

-6-
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2
and E(e) = 0, Var(ei) = liPi( Pi) + 62i02 + (1 -

6 li)(1 -62),

with e. ,..., en independent.

Next, if parameter constraints exist as in (20), just substitute

h(6) for (0, P) in the model in (23). The above indicator variables will

enable the statistical package to directly analyze all the information

modeled in (23) via standard nonlinear, least squares algorithms. One

merely needs to iteratively compute:

(i) model derivatives of (23) with respect to (Q, p) or

e if constraints are to be used,

and (ii) the regression weights [Var(e )]

J

I
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III. A POSSIBLE EXPERIMENT

To elucidate the application of estimating the model in (23), an

example of a possible impact acceleration injury experiment with n

observations may be considered. Suppose that for i - 1,...,n:

(i) x (1, xli)' where xli denotes peak sled acceleration for

the ith subject,

(ii) y is a dichotomous injury observation for ith subject, with

value of 1 for injury, 0 for no injury,

th
and (iii) y21 is a continuous preinjury measurement for the i subject.

Then the model of the empirical data as given in (19b) has

=-2 g12

A. SOME ASSUMPTIONS

Vi Suppose further, that for a particular level of peak sled acceleration,

x 0 say, a good prior unbiased estimate of injury probability, p0, is avail-

able. Let this prior injury probability and peak sled acceleration level

be related by

"p 0o 0 (1 +  11 xO "

Assume that the variance of p0 is known or estimated to be ip

Thus, the prior information as modeled in (19a) can be written as

-8-



r*= Z! , p) + rv

where r is a lxi matrix estimated by '-1, r* is a lxl vector equal to

-I po, and &*(8, p) = -i [([l, x 0 , 0, 0])].

Finally, assume that the elements of 0 are constrained by the equation

812 = a2 01. This constraint can arise quite naturally from the following

situation. Suppose that the event of a preinjury measurement, (e.g., change

in evoked potential response) exceeding some critical, prespecified value,

Y., is always at least as likely as the occurrence of an injury, for all

levels of peak sled acceleration. This can be mathematically represented

by

Pr(y 21 > Yo X) > Pr(y,1 = lix) for all x.

Now,

Pr(y 21 > Y01 -) = t[-(Y0 -- '-2)/U2]

and Pr(yll = lix) = D(x'$1).

Therefore, for all x,

[-(Y- 2)/] >  '_)

However, this can only be true if

812/o2 = 811

The constraint imposed by the vector valued function h can be described

by 801 1 0 0 0

811 0 1 0 0

8= =h(8)= 0 0 1 0
-- 802

0 2

812 0 0 0 0

. O0 0 0 1

where

-9-
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However, h depends upon a2, which is unknown. In other words, the prior

information, in terms of the parameter constraints, is not complete. In

this particular case, the best that can be done is to estimate h by h,

where 1 0 0 0

0 1 G 0

h(6)= 0 0 1 0 6

0 02 0 0

0 0 0 1

and 02 is the minimum variance, unbiased estimator of 02 based on the
A A

preinjury data, i.e. n2 = nF c2, being the maximum likelihood2 n 22 2

estimate of 0.

B. MODEL REPRESENTATION

The model representation for computer analysis is then given (for

!,i i 1,...,n and J - 1) by:

zi1= 61i~l= + 6 2iY2i + (I - 6 1i)(1 -
6
2i)r*

k(, P) = 61 f li (Q_) + 6 21f21(h(6)) + (1 - )(l- 6 21)g _h())

ei . 6 1ii + 6 212i + (1 - 6 11)( 1 - 6

-10-



where 6 and 6 21 were defined previously, and

fli (h(e_)) O(Ui(3_!, p) )

f0 + xi121f21 (h(O)) 0o2 + il 2 11

= p-1p
rj 

p

gd(_)) - 0-l(0 + XOall).

If a separate estimate of 8 based on the dichotomous injury data

and separate estimates of §2 and 02 based on the continuous preinjury

data are available, then a "quick-and-dirty" estimate of p can be computed.

Note that

E(e 2 iYli) = -PC24(x B) (24)

Var(e a~i U2{ (Ll) - ~ 2 1(.x1 )4,(x) + 02W

The results in (24) are derived in the appendix of this and the previous

technical report [3]. From (24) it is easy to see that

E{_ 2  (a(a2 p (xO)) 1} = •

Thus,
n
E E2 y /[¢(x'_ )no (25)

is an approximately unbiased estimate of p. Here is the probit estimate
, of _1 based on the dichotomous injury data only and 2 is the unbiased

2

estimate of 02

(n- 2) il 2i

[31

-11
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Unfortunately, the estimate in (25) can sometimes have absolute

values exceeding one. A more refined (approximately unbiased) estimate

of p can be easily obtained by using an iterative least squares statistical

algorithm. To compute an iteratively reweighted, least squares estimate of

p, simply let

e2lyll

(26)

c2nYln

be the dependent observations and let

a2

* (27)

be the independent observations. Compute the initial weights from the

reciprocals of the variances of c2 i1 li by picking an initial value for

P. The model derivatives are estimated by (27).

:C. CORRELATION

Thus far, all models have assumed that p is constant for all xAn approximate chi-square test can be conducted to test the null hypothesis

that p does not depend upon x . From (24) the means and variances of

C l can be computed. Let

~-12-
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1 E(E 2 Y ) ,

a = Var(e y21 Yli)
i 2l

621y2i - Pi
wi a

I

n

and . w .
n

Then w,...,wn are stochastically independent, each with mean zero and

variance equal to 1. It follows that

- 2
E (wi  w)

has an approximate chi-square distribution with (n - 1) degrees of freedom.

Of course all the pi's and a 's are not known, but they can be estimated byi
substituting the estijates of the model parAtmeters via the equations in (24).

Replacing the 4i 's and a 's by their estimates should still yield a reason-
i i

ably powerful test against significant departures from the null hypothesis

for moderate to large samples sizes.

If the chi-square test rejects the null hypothesis, then it is still

possible to estimate a probit model where p depends upon x . However in this

case, it would be desirable to increase the sample size. This is due to

the addition of the extra parameters used to model p . The computation of

the model parameter estimates would also be considerably more difficult to

.4 obtain.

-13-
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IV. DISCUSSION

The purpose of using auxiliary information is to improve the estimate

of 0 . In some estimation situations, however, the use of auxiliary infor-

mation may result in estimates of 0 that are slightly less accurate than

if the auxiliary information were not used at all. If the constraint
information is correct and the prior estimates of 8 are close to the true

value of -i, then the a priori auxiliary information should always contribute

to reducing the mean square error (MSE) of 0

If, however, the sample size is small, there is no apriori information

linking the parameters of l with 2, and in addition the correlation between

the injury tolerance and the side effect (i.e., preinjury) is low, then the

incorporation of preinjury data could possibly contribute to a slight increase

in the MSE of the estimate of i" In order to assess the benefits of the

inclusion of preinjury data for small sample sizes, a Monte Carlo study is

being conducted. This study will be discussed in a future report.

'11I

4
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APPENDIX

Since
Var (c2lyli) - E{(1 2 iY)

2  {E (e22yli) 2

it is sufficient, in view of the appendix in [3], to derive an expression

for E{(e21yli) 2

Now,

E{(F 2 iYli) 2 E{ 2 iYii}

f f 2 1 (t )fcT(C2i, t) de2 dtI
- O 2i i

0 f 2 f (E 2it )fT (tW)d 2idt i

! 02
f Z{ 2 Iti}f (t )dt

00 21 1 T i i

However,
Ei I 2Va( Itl) + { ( C21t)}2

2 2E{E2it Var( 2ii 2I

l- 2 Y2 2 2 2 2!-(-22 + P22(t i - JJTt)/a

since E21 ti has a normal distribution with mean

PO2 (ti- T)/aT

and variance

P1 2)a] 2

Thus,

-16-



E{(E 2iY 1i)
2  - (1 - P )o2 f fT(ti )dt + O2/a)f -(t 2 f(t)dt

2yi 2 Ea T i i T 1 Ti

Now, from (3) and (4) in the appendix of [3],

0 -IT /a It

ffT(ti)dti - fTi T1 e-u/2 du

- *(-Ui/ Ia)
T i T

- (_x.81)•

Also,

-PT /OT
0 2 2 2 1

f00 [(t i  P)2 /a]f (ti)dtt -00 u2 e u-~i T fT~ii . 2eU du .

By performing integration by parts, the integral on the right hand side

becomes

_ -u 2  Ti /aT -11T i/O -1 _
-u (2Tr) e - +f - e du

, O

This expression is equal to

T-(PlaT) -Ti/y + 0(vj /0) -(- +  -

iT T T Ti T 1 c~'

Therefore,

E{(c 2iyi) 
2  ( 2 2)oO(x +) P 2 a 2 020 1 ) ( j.§.)(§)

and hence,

Var(E 2 i i) - 0 2 o(_, _Bl ) + _ .
't

-17-
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